
FY04 Luminosity Plan

Presentation to the Board of Overseers
October 3, 2003
Dave McGinnis

Outline

- FY03 Performance
- Accelerator Issues
 - > TEV
 - > Pbar
 - > Main Injector
 - > Reliability
- Operations
 - > Study Strategy
 - > Shot Strategy
- FY04 Luminosity Parameters

		Last 10 stores	Last 10 stores	Last 50 stores	Last 50 stores	
Parameter	Last Store	Average	St. Dev.	Average	St. Dev.	
Initial Luminosity (Average)	40.2	37.5	4.6	36.1	6.5	x10 ³⁰ cm ⁻² sec ⁻¹
Integrated Luminosity per Store (Averaged)	1510.3	1053.0	396.9	1088.9	495.7	nb ⁻¹
Luminosity per week (Averaged)	-	5.6	-	6.4	-	pb ⁻¹
Store Length	19.9	14.1	5.4	14.9	6.7	Hours
Store Hours per week	-	75.5	-	87.8	-	Hours
Shot Setup Time	2.5	2.2	0.3	2.3	0.6	Hours
Protons per bunch	238.2	237.3	22.6	237.3	18.8	x10 ⁹
Proton Efficiency to Low Beta	58.0	59.9	3.4	58.3	4.7	%
Antiprotons per bunch	22.6	22.5	3.0	22.2	2.6	x10 ⁹
Start Stack	118.8	134.6	26.5	144.3	22.1	x10 ¹⁰
End Stack	11.8	14.8	5.4	16.5	11.0	x10 ¹⁰
Unstacked Pbars	107.0	119.8	24.0	128.2	19.6	x10 ¹⁰
Pbar Transfer efficiency to Low Beta	76.0	68.5	6.3	63.3	7.7	%
HourGlass Factor	0.63	0.64	0.01	0.63	0.01	

Accelerator Issues

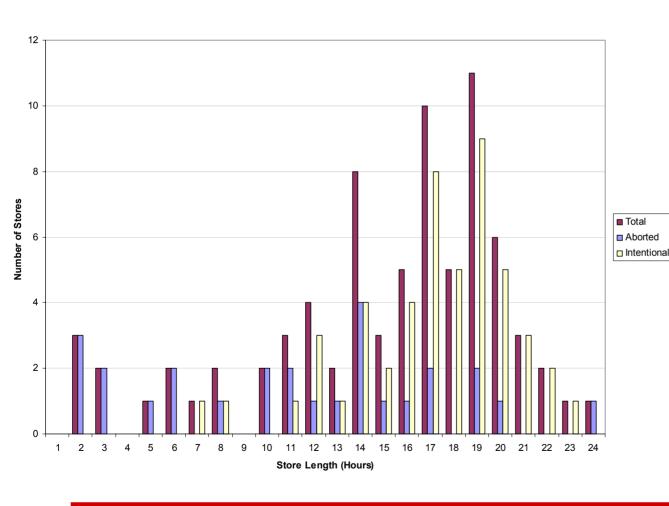
Run II (without the Recycler) and Run Ib

- Projected 5.3x (8.5×10³¹cm⁻² sec⁻¹ / 1.6×10³¹cm⁻² sec⁻¹)
- Delivered $2.3 \times (3.7 \times 10^{31} \text{cm}^{-2} \text{ sec}^{-1} / 1.6 \times 10^{31} \text{cm}^{-2} \text{ sec}^{-1})$
- More Pbars
 - projected 3.3x
 - More protons on target $2x (5x10^{12}/2.5x10^{12})$
 - Faster Pbar cycle rate 1.6x (2.4sec/1.5sec)
 - > delivered 1.9x
 - More protons on target $1.9x (4.7 \times 10^{12}/2.5 \times 10^{12})$
 - Faster Pbar cycle rate 1x (2.4sec/2.4sec)
- More Protons
 - projected 1.17x (270x109/230x109)
 - delivered 1.09x (250x109/230x109)
- Shorter Bunch lengths
 - > projected form factor 1.25x (0.37m <- 0.6 m)
 - delivered form factor 1.07x (0.52m <- 0.6 m)</pre>
- Higher Energy
 - projected 1.11x (1000 GeV/ 900 GeV)
 - delivered 1.09x (980 GeV/ 900 GeV)

TEVATRON Issues

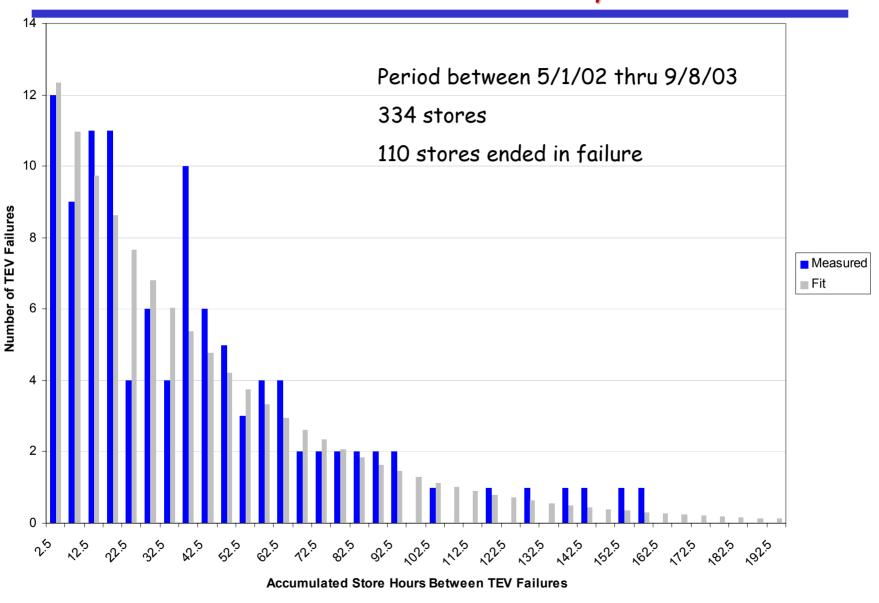
- Transverse Emittance Dilution at injection
 - > Transmission efficiency to low beta
 - Long range Beam Beam effects big beam sizes
- Chromaticity control
 - > Lifetime at 150 GeV
 - > Stability number of protons at low beta
- Helices
 - > Transmission efficiency to low beta
 - Long range Beam Beam effects
- Reliability

TEVATRON Transmission Efficiency


- We made very good progress during the summer of 2003 in increasing the efficiency from 60% to 73% (SBD corrected)
- At first glance, 73% antiproton transmission efficiency from the Accumulator Core to Low Beta seems to be very low.
- However, the 73% transmission efficiency is composed of many stages of transfers each with relatively good efficiency 73% = (94%)⁵
- To improve the transfer efficiency to 90%, the average efficiency of each stage of the pbar transfer must increase from 94% to 98%
- Increasing the pbar transfer efficiency from 73% to 90% will increase the luminosity by a factor of 1.23

TEVATRON Projects

- Transverse Emittance Dilution at injection
 - > Injection lattice matching for pbars and protons
 - > Smart bolt retro-fit to be (this shutdown)
 - > New TEVATRON sextupole (borrowed from Pbar)
 - > Injection dampers for pbars
- TEVATRON Chromaticity Control
 - > Shielding of the FO Lambertsons
 - > Re-wiring of the TEV octupole circuits
- Better TEV Helices
 - Optimized helices at 150 GeV
 - > TEV alignment


TEVATRON Reliability

 Our highest luminosities were obtained by shooting from large stacks

- These large stacks were obtained by stacking for a long time because the previous store lasted a long time
- Our desire is to run long stores and stack big.
- However, our <u>average</u> store length is limited by equipment failure

TEVATRON Reliability

TEVATRON Reliability

- A TEV failure is independent of the time in the store (exponential distribution)
 - > The mean number of store hours between failures is 42 hours
 - > 42 hours translates to a TEV reliability of 97.6% per hour
 - The probability that the TEV will remain at up for the next hour is 97.6%
- A TEV Reliability of 97.6% predicts that:
 - > 1 out of every 4 stores will end in failure if our target store duration is 12 hours
 - > 1 out of every 3 stores will end in failure if our target store duration is 17 hours
- Increasing the reliability by 1% will, on average, require the doubling of the lifetime of TEV components

Pbar Production

- Because our <u>average</u> store length is limited by equipment failure:
 - > The only way to increase the luminosity significantly in FY04 is to increase the stacking rate.
 - > The Pbar stacking rate is limited between "cooling" cycle time
- Pbar Cooling Cycle Projects
 - > Debuncher Momentum Cooling Notch Filter Equalizers
 - > New Stacktail BAW filters
 - > Improved Stacktail crossover
 - > Main Injector Beam loading compensation through the entire acceleration ramp
 - > Main Injector Longitudinal Dampers

Luminosity Parameters

Lumi			
Phase	FY03	FY04	
Initial Luminosity	37.9	74.9	$x10^{30} cm^{-2} sec^{-1}$
Average Luminosity	20.7	44.4	x10 ³⁰ cm ⁻² sec ⁻¹
Integrated Luminosity per week	6.4	13.7	pb ⁻¹
Integrated Luminosity per store	1.1	2.4	pb ⁻¹
Number of stores per week	5.7	5.7	
Average Store Hours per Week	85	85	Hours
Store Length	15	15	Hours
Store Lifetime	11.0	13.0	Hours
HEP Up Time per Week	98	98	Hours
Good Week Ratio	1	1	
Shot Setup Time	2.2	2.2	Hours
	FY03	RED	

TEV Helices

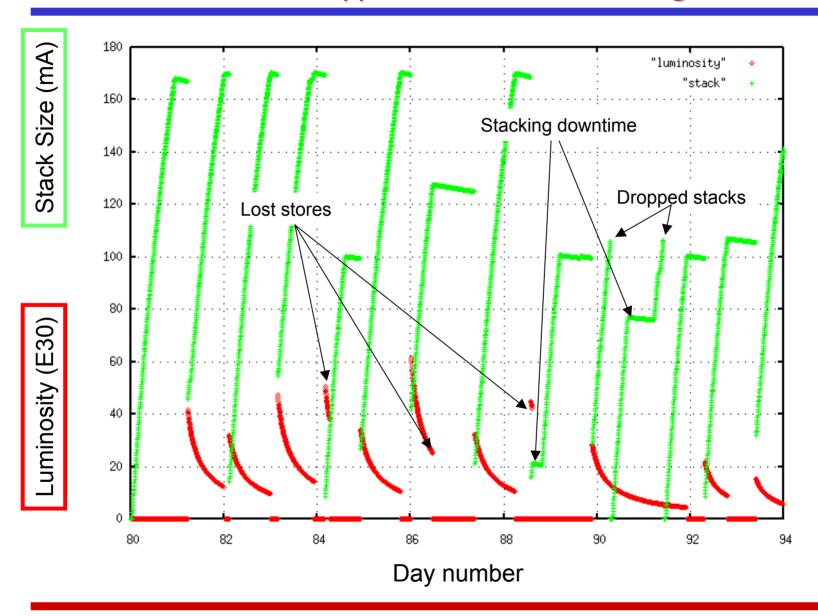
TEVATRON Parameters

TEVA	TRON Para	meters		
Phase	FY03	FY04		
Number of Protons per bunch	250	260	x10 ⁹ FO Lambertson	
Number of Pbars per bunch	7 24.9	37.6	$x10^9$	A a 1 %
Proton Emittance	32	29	π -mm-mrad TEV Injection Λ	natching
Pbar Emittance	16	13	π -mm-mrad TEV Injection G	Couplina
O proton	0.525	0.500	meters	, , , , , , , , , , , , , , , , , , ,
O pbar	0.525	0.500	meters TEV Helices	
BetaIP	40	35	cm MI Long. Dampe	ers
Transfer Eff. To Low Beta	0.73	0.8	TEV Chromatici	ty control
Using SBD Calibration	93			,, сопт от
Back Calculated Emittances	FY03	RED		

Antiproton Production Parameters

Antip	roton Param	eters		
Phase	FY03	FY04		
Zero Stack Stacking Rate	11.3	18.0	x10 ¹⁰ /hour	
Average Stacking Rate	8.2	11.3	x10 ¹⁰ /hour	/ Debuncher Quad Stands
Stack Size transferred	122.6	169.1	$x10^{10}$	/ Debuncher filters
Stack to Low Beta	89.5	135.3	$x10^{10}$	Debution (mors
Pbar Production	15.0	17.0	x10 ⁻⁶	Stacktail filters
Protons on Target	5	5	$x10^{12}$	Chapletail phaga agagas
Pbar cycle time	2.4	1.7	Secs.	Stacktail phase crossover
Pbar up time fraction	1	1		
Initial Stack Size	15	15	$x10^{10}$	MT Long Dampana
Stack Size at 1/2 Stacking Rate	150	150	$x10^{10}$	MI Long. Dampers
	FY03	RED		

Operations

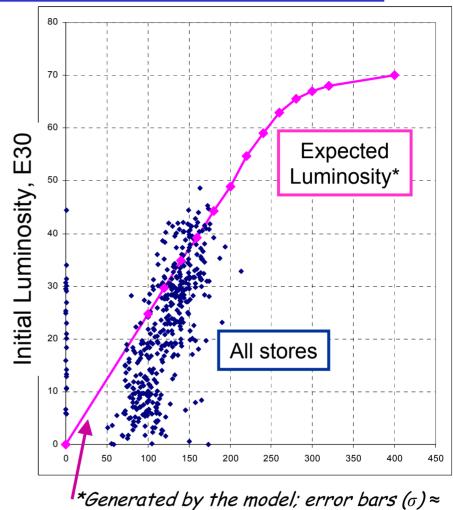

FY04 Study Strategy

- FY04 Parasitic Study Strategy
 - > Recycler "Pbar Tax"
 - 25% of the Pbar stacking time line will go to Recycler commissioning
 - Uses of the tax: MI Access time, Proton events, Pbar transfers
 - > Present 80% Stack size / 20% Time-line strategy
- FY04 Dedicated Study Strategy
 - > A study period would begin only if the previous 14 days contained 140 hours of store time.
 - > Study periods would occur twice a week.
 - > Study periods will be short (8-12 hours)
 - > There would be at least two stores between each study period.
 - > Studies would be blocked according to themes.
 - > At the end of the study block (or theme) a short write-up (TEV Note or Pbar Note) describing the results of the studies would be expected.
- Maintenance studies would occur at the discretion of the Run Coordinator.

Shot Strategy

- What is the best strategy for ending a store?
 - > How long should we run the stores?
 - What stack size should we shoot from
- What is the best strategy for recovering from TEV failure or a lost Pbar Stack?
 - > What is the minimum stack we should shoot from.
- When is the best time to do studies?
- We are re-developing a Monte-Carlo model of the TEVATRON Complex
 - Will incorporate a realistic model of the TEVATRON based on realistic parameters obtained from SDA
 - Will model the inherent randomness of the Collider Complex
 - Downtime (based on SDA)
 - Variations on all realistic parameters (based on SDA)

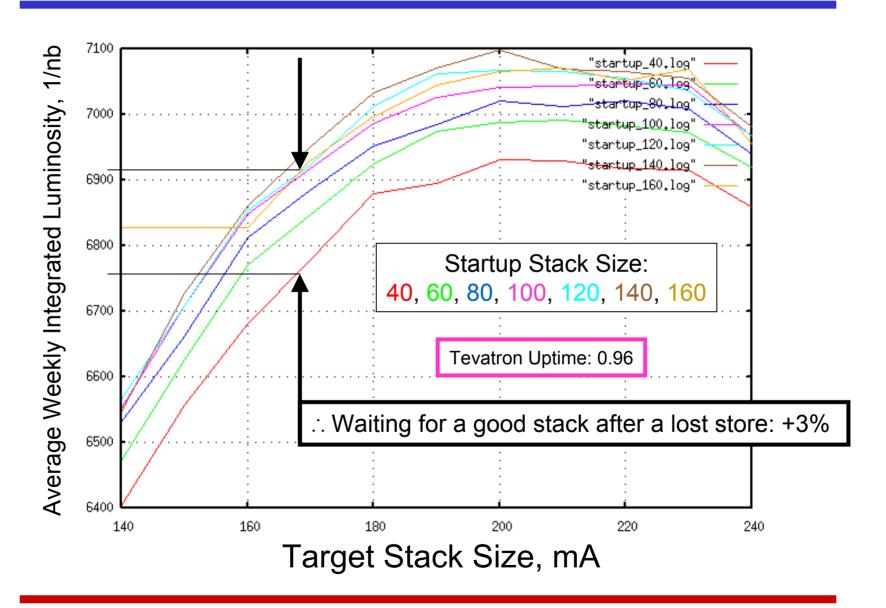
Simulation of a Typical 2 Week Stacking Period

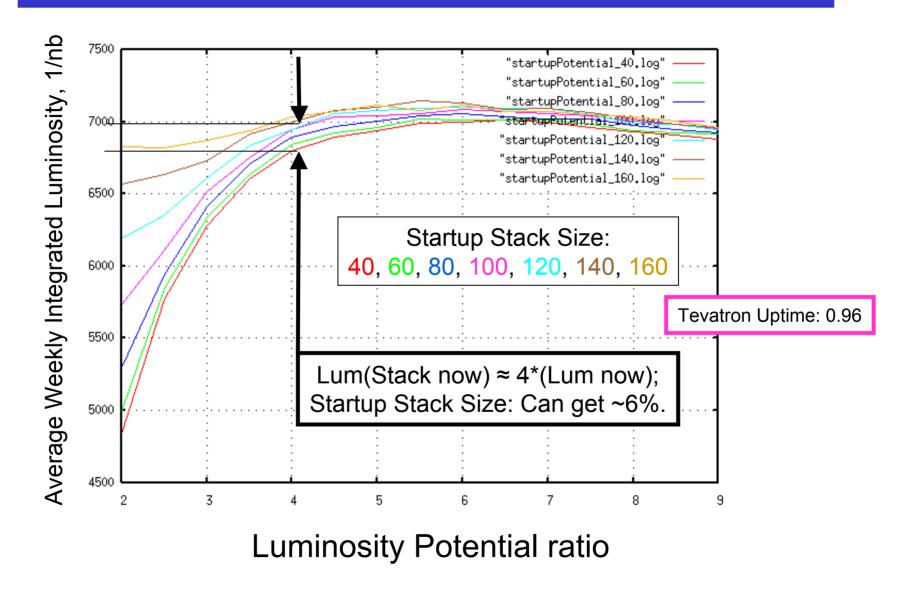

Algorithms for Ending a Store

Target Crossings

- > Stack Size
- > Store Duration
- > Integrated Luminosity
- > Minimum Instantaneous Luminosity

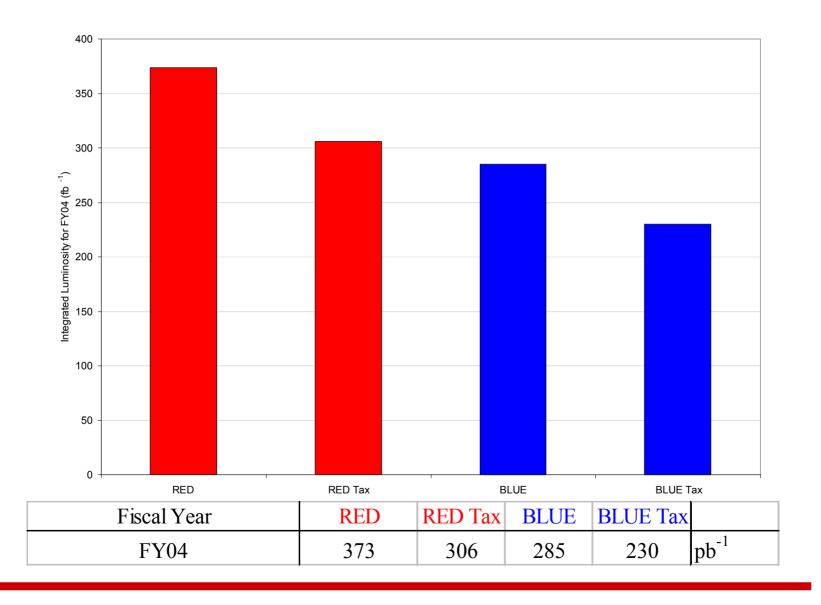
Luminosity Potential


- > Comparison of "Expected" instantaneous luminosity and present instantaneous luminosity
 - · When the ratio between the expected luminosity and the current luminosity exceed some constant, V.
 - · When the difference exceeds constant, L.


20%

Needs more confirmation from SDA

Target Stack Size and Recovery from TEV Failure



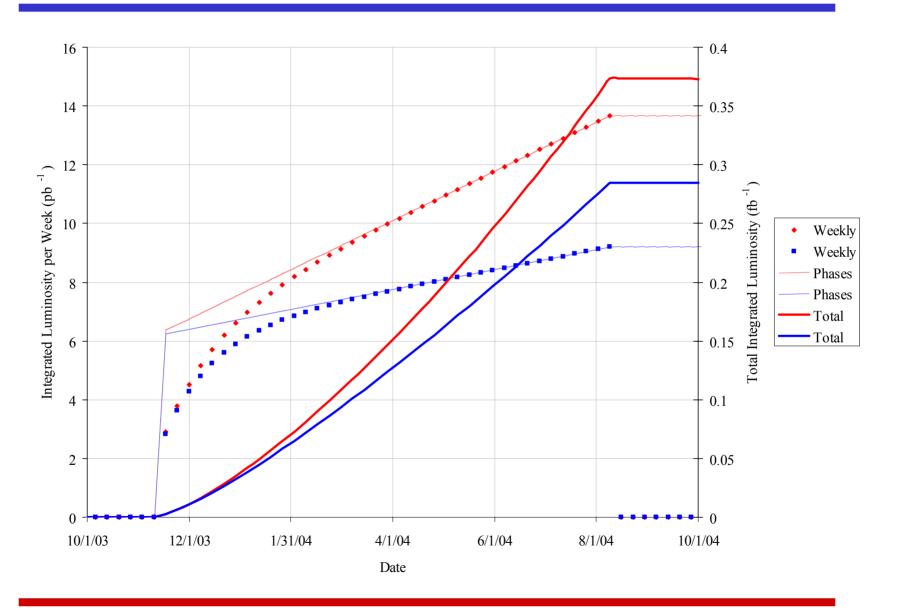
Example of Startup Stack Size and Luminosity Potential Ratio

FY04 Luminosity Parameters

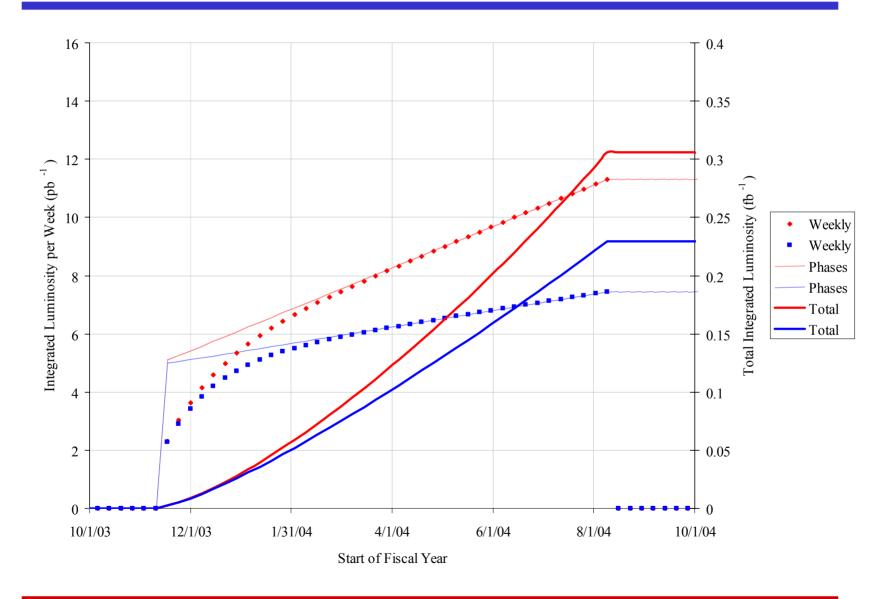
FY04 Integrated Luminosity

Luminosity Parameters

		Luminosity Parameters				
Phase	FY03	FY04	FY04	FY04	FY04	
Initial Luminosity	37.9	74.9	61.9	53.4	43.3	$x10^{30} cm^{-2} sec^{-1}$
Average Luminosity	20.7	44.4	36.8	30.5	24.7	$x10^{30} cm^{-2} sec^{-1}$
Integrated Luminosity per week	6.4	13.7	11.3	9.2	7.4	pb ⁻¹
Integrated Luminosity per store	1.1	2.4	2.0	1.6	1.3	pb ⁻¹
Number of stores per week	5.7	5.7	5.7	5.6	5.6	
Average Store Hours per Week	85	85	85	84	84	Hours
Store Length	15	15	15	15	15	Hours
Store Lifetime	11.0	13.0	13.0	12.0	12.0	Hours
HEP Up Time per Week	98	98	98	96	96	Hours
Good Week Ratio	1	1	1	1	1	
Shot Setup Time	2.2	2.2	2.2	2.2	2.2	Hours
	FY03	RED	RED TAX	BLUE	BLUE Tax	


TEVATRON Parameters

		TEVATRON Parameters				
Phase	FY03	FY04	FY04	FY04	FY04	
Number of Protons per bunch	250	260	260	260	260	$x10^9$
Number of Pbars per bunch	24.9	37.6	31.1	30.3	24.5	$x10^9$
Proton Emittance	/ 32	29	29	31	31	π -mm-mrad
Pbar Emittance	1 6	13	13	15	15	π -mm-mrad
O proton	0.525	0.500	0.500	0.500	0.500	meters
O pbar	0.525	0.500	0.500	0.500	0.500	meters
BetaIP	40	35	35	37	37	cm
Transfer Eff. To Low Beta /	0.73	0.8	0.8	0.77	0.77	
Using SBD Calibration Back Calculated Emittances	FY03	RED	RED TAX	BLUE	BLUE Tax	


Antiproton Parameters

		Antipr	oton Para	meters		
Phase	FY03	FY04	FY04	FY04	FY04	
Zero Stack Stacking Rate	11.3	18.0	18.0	13.7	13.7	x10 ¹⁰ /hour
Average Stacking Rate	8.2	11.3	9.3	9.4	7.6	x10 ¹⁰ /hour
Stack Size transferred	122.6	169.1	139.9	141.4	114.6	$x10^{10}$
Stack to Low Beta	89.5	135.3	111.9	108.9	88.2	$x10^{10}$
Pbar Production	15.0	17.0	17.0	16.0	16.0	$x10^{-6}$
Protons on Target	5	5	5	5	5	$x10^{12}$
Pbar cycle time	2.4	1.7	1.7	2.1	2.1	Secs.
Pbar up time fraction	1	1	0.75	1	0.75	
Initial Stack Size	15	15	15	15	15	$x10^{10}$
Stack Size at 1/2 Stacking Rate	150	150	150	150	150	$x10^{10}$
	FY03	RED	RED TAX	BLUE	BLUE Tax	

Integrated Luminosity per Week - no Pbar tax

Integrated Luminosity per Week - with Pbar tax

